Plenty of daylight reduces the effect of blue light screens on night sleep 

intestinal tumours, molecular scissors, disease, genetic, immune cells, drug development, Diabetes, Antibiotic, hydrogen generation, chronic obstructive pulmonary disease, malaria, photosynthesis, kidney failure, Brain tumours, mental health, blood cancer, cancer, dementia, cancer treatment, antibiotic resistance, blood vessel leakage, quantum simulations, atrial fibrillation, batteries, goiter treatment, terahertz radiation, organic materials , Guild of European Research Intensive Universities, gene copies, social anxiety, blue light screens, ‘Our hope is that these findings will make it possible to discover a way to selectively inhibit the TGF-beta signals that stimulate tumour development without knocking out the signals that inhibit tumour development, and that this can eventually be used in the fight against cancer,’ says Eleftheria Vasilaki, postdoctoral researcher at Ludwig Institute for Cancer Research at Uppsala University and lead author of the study. TGF-beta regulates cell growth and specialisation, in particular during foetal development. In the context of tumour development, TGF-beta has a complicated role. Initially, it inhibits tumour formation because it inhibits cell division and stimulates cell death. At a late stage of tumour development, however, TGF-beta stimulates proliferation and metastasis of tumour cells and thereby accelerates tumour formation. TGF-beta’s signalling mechanisms and role in tumour development have been studied at the Ludwig Institute for Cancer Research at Uppsala University for the past 30 years. Recent discoveries at the Institute, now published in the current study in Science Signaling, explain part of the mechanism by which TGF-beta switches from suppressing to enhancing tumour development. Uppsala researchers, in collaboration with a Japanese research team, discovered that TGF-beta along with the oncoprotein Ras, which is often activated in tumours, affects members of the p53 family. The p53 protein plays a key role in regulating tumour development and is often altered – mutated – in tumours. TGF-beta and Ras suppress the effect of mutated p53, thereby enhancing the effect of another member of the p53 family, namely delta-Np63, which in turn stimulates tumour development and metastasis.

The use of smartphones and tablet computers during evening hours has previously been associated with sleep disturbances in humans. A new study from Uppsala University now shows that daytime light exposure may be a promising means to combat sleep disturbances associated with evening use of electronic devices. The findings are published in the scientific journal Sleep Medicine.

The use of blue light emitting devices during evening hours has been shown to interfere with sleep in humans. In a new study from Uppsala University involving 14 young females and males, neuroscientists Christian Benedict and Frida Rångtell sought to investigate the effects of evening reading on a tablet computer on sleep following daytime bright light exposure.

‘Our main finding was that following daytime bright light exposure, evening use of a self-luminous tablet for two hours did not affect sleep in young healthy students’, says Frida Rångtell, first author and PhD student at the Department of Neuroscience at Uppsala University.

‘Our results could suggest that light exposure during the day, e.g. by means of outdoor activities or light interventions in offices, may help combat sleep disturbances associated with evening blue light stimulation. Even if not examined in our study, it must however be kept in mind that utilizing electronic devices for the sake of checking your work e-mails or social network accounts before snoozing may lead to sleep disturbances as a result of emotional arousal’, says senior author Christian Benedict, associate professor at the Department of Neuroscience.