A Sweet Solution to the Thermal Energy Storage Problem

black hole, Carbon dioxide, genes, Alzheimer, Brain-computer interfaces, graphene, immune system, topology, climate change, Twin Embryos, blue brain, climate change, human genome, mature B cell neoplasia, artificial iris, autonomous robot, chemotherapy, tidal energy, Nanomedicine, ecosystem, Mycotoxins, obesity, methylisation, deep drilling, brain scans, volcanic gas, biocatalyst enzymes, earthquakes, detectors, robotics, asthma sufferers, infrastructure, olive trees, solar energy, satellites, olive oil, robotic arms, zika virus, locked-in state, digital detox, climate change, climate, stroke, The new production method was developed by engineers at the University of Exeter. It consists in creating entire device arrays directly on the copper substrates used for the commercial production of graphene, after which complete and fully-functional devices can be transferred to a substrate of choice. This process has been demonstrated by producing a flexible and completely transparent graphene oxide-based humidity sensor. Not only does this device outperform currently-available commercial sensors, but it’s also cheap and easy to produce using common wafer-scale or roll-to-roll manufacturing techniques. ‘The conventional way of producing devices using graphene can be time-consuming, intricate and expensive and involves many process steps including graphene growth, film transfer, lithographic patterning and metal contact deposition,’ explains Prof David Wright from Exeter's Engineering department. ‘Our new approach is much simpler and has the very real potential to open up the use of cheap-to-produce graphene devices for a host of important applications from gas and bio-medical sensors to touch-screen displays.’ One of team’s main objectives was to increase the range of surfaces that graphene devices can be put on. Whilst the demonstrated humidity sensor was integrated in a plasdinosaur, dieting, coral, dengue epidemics, vaccines, thermal energy, artificial intelligence, Cloudlightning, Memristors, Sensory Tool, HIV, autonomous robot, offshore renewable energy, Wearable robots, processors, Artificial, climate, plasmons, Antarctica’s ice, cryogenic preservation

As scientists and researchers continue to seek new ways to reduce dependency on fossil fuels and decrease the amount of CO2 put into the air, one area that is sometimes overlooked is how heat is stored. For example, although much research has gone into collecting and using solar and wind energy, little has gone towards answering the question of how to store excess energy for the times when the sun is down or the wind isn’t blowing.

Traditionally, the answer to this storage question has been batteries or, in some cases, pumped hydroelectric storage – two solutions that are far from perfect. In fact, some of their inefficiencies can actually cancel out any environmental benefit created by using solar and wind energy in the first place.

One possible solution to the storage question is to convert the energy into thermal energy and store it in thermal energy storage facilities, which have been shown to be generally more efficient, better at capturing wasted heat and able to provide more low-cost energy. However, before we can make widespread use of thermal energy, research into the development of cost-effective, high-density storage technology is needed.

And this is exactly what the researchers from the EU-funded SAM.SSA project delivered.

Thinking outside the box

The project’s objective was to develop new phase change materials (PCM) for seasonal thermal energy storage applications (STES) in the range of medium temperatures. Researchers wanted these materials to be low-cost, environmentally sound, safe and easy to use. Furthermore, the materials would have to be able to serve as a long-term storage solution that provided significantly lower levels of thermal loss than currently available options.

This was an innovative approach to the problem as PCM are not typically viewed as a STES option. This is due to their insufficient energy densities and their high risk of solidification during storage – a phenomena caused by inadequate insulation for maintaining temperatures beyond the melting point.

The magical material

For SAM.SSA, the magic material for overcoming the PCM problem was sugar alcohol, a common and abundantly available waste product of the food industry. Also known as molecular alloys based on sugar alcohols (MASA), this material allows for the adjustment of the melting point and, as a result, significantly increases energy density. According to a recent article on the project published in ‘The Journal of Physical Chemistry’, sugar alcohols, when mixed with carbon nanotubes, create a material capable of storing renewable energy as heat.

The project focused on sugar alcohols as they permit high levels of undercooling, which minimises the risk of spontaneous PCM solidification. They also reduce the requirements for insulation, as well as thermal loss during long-term storage. With the application of a local thermal shock or ultrasound, nucleation and subsequent crystallisation is induced, allowing for an easy and efficient discharge of the energy from the storage system.

Laying the foundation

When carbon nanotubes of varying sizes are mixed with two types of sugar alcohols – erythritol and xylitol – researchers found that, with one exception, heat transfer within a mixture would decrease as the nanotube diameter decreased. They also found that, as a general rule, higher density combinations meant better heat transfer. These findings are significant as they lay the foundation for the future design of sugar alcohol-based energy storage systems.

At the time of the project’s conclusion, researchers had created an early-stage prototype for treating pure sugar alcohol or sugar alcohol blends to achieve crystallisation. With basic concepts for further prototypes already in the works, along with exploitation strategies, SAM.SSA researchers are optimistic about the use of MASA as an answer to the problems of thermal energy storage.

Source: Based on information from CORDIS.