Trending Science: CERN Announces Five New Particles Uncovered by Large Hadron Collider

‘Hiding in plain sight’ is how five newly identified particles have been described, but it took the exquisite sensitivity of CERN’s Large Hadron Collider to finally spot them. CERN describes the observation of five new states all at once as ‘rather unique’.

black hole, Carbon dioxide, genes, Alzheimer, Brain-computer interfaces, graphene, immune system, topology, climate change, Twin Embryos, blue brain, climate change, human genome, mature B cell neoplasia, artificial iris, autonomous robot, chemotherapy, tidal energy, Nanomedicine, ecosystem, Mycotoxins, obesity, methylisation, deep drilling, brain scans, volcanic gas, biocatalyst enzymes, earthquakes, detectors, robotics, asthma sufferers, infrastructure, olive trees, solar energy, satellites, olive oil, robotic arms, zika virus, locked-in state, digital detox, climate change, climate, stroke, The new production method was developed by engineers at the University of Exeter. It consists in creating entire device arrays directly on the copper substrates used for the commercial production of graphene, after which complete and fully-functional devices can be transferred to a substrate of choice. This process has been demonstrated by producing a flexible and completely transparent graphene oxide-based humidity sensor. Not only does this device outperform currently-available commercial sensors, but it’s also cheap and easy to produce using common wafer-scale or roll-to-roll manufacturing techniques. ‘The conventional way of producing devices using graphene can be time-consuming, intricate and expensive and involves many process steps including graphene growth, film transfer, lithographic patterning and metal contact deposition,’ explains Prof David Wright from Exeter's Engineering department. ‘Our new approach is much simpler and has the very real potential to open up the use of cheap-to-produce graphene devices for a host of important applications from gas and bio-medical sensors to touch-screen displays.’ One of team’s main objectives was to increase the range of surfaces that graphene devices can be put on. Whilst the demonstrated humidity sensor was integrated in a plasdinosaur, dieting, coral, dengue epidemics, vaccines, thermal energy, artificial intelligence, Cloudlightning, Memristors, Sensory Tool, HIV, autonomous robot, offshore renewable energy, Wearable robots, processors, Artificial, climate, plasmons, Antarctica’s ice, cryogenic preservation

The LHCb experiment being run by researchers at CERN’s Large Hadron Collider, also known as ‘the beauty experiment’, is trying to unravel what happened after the Big Bang. While exploring that, researchers have stumbled on five new subatomic particles that could help to explain what holds the centre of atoms together.

The discovery arose from the LHCb detector’s precise recognition of particles and the large dataset accumulated during the first and second runs of the Large Hadron Collider. These two elements have allowed researchers to identify the new particles with what CERN describes as, ‘an overwhelming level of statistical significance – meaning that the discovery cannot be just a statistical fluke of data’.

Dr Grieg Cowan, of the University of Edinburgh, UK, is working on the project. In an article published on the BBC news website he describes the discovery as striking, ‘(it) will shed light on how quarks bind together. It may have implications not only to better understand protons and neutrons, but also more exotic multi-quark states, such as pentaquarks and tetraquarks.’

Past thinking now confirmed

The existence of omega-c baryon particles was confirmed in 1994 and since then physicists have always believed the particles appear in different forms. The newly discovered particles are all baryons – sub atomic particles comprised of three smaller units called quarks. Known as the basic building blocks of matter, there are six types of quark which are known as ‘up’, ‘down, ‘strange’, ‘charm’, top’, and ‘bottom’.

The particles were found to be excited states – a particle state that has a higher energy than the absolute minimum configuration (or ground state) – of omega-c-zero. The research is presented more fully at arXiv.org, on the Cornell University Library website.

The investigation needed close to 250 trillion collisions and in its announcement CERN says the next step is to establish what the quantum numbers of the new particles are.

Source: Based on information from CORDIS.