Turning up the Heat on Protein Interactions

Deep data analytics drive the development of a technique that sheds light on drug action by monitoring the dynamics of thousands of protein complexes simultaneously within intact cells

bone repair, 3D printing, neurodegenerative disease, cancer treatments, biological research, sepsis, foot and mouth disease, cytometry, batteries, Influenza A virus, vascular diseases, New Cancer Drugs, RNA molecules, polymers, antimicrobial resistance, Aging White Blood Cells, microviscosity, Transplant Drug, Nanophotonics, photonics, Built-In Nanobulbs, cerebral cortex, cancer cells, nanowires, optoelectronic, solar energy, gold nanowires, Chikungunya virus, concrete, glaucoma, light-emitting diode, Proteomics, nanostructures, nickel catalyst, Ultrafast lasers, liver capsular macrophages, obesity, cancer, lignin polymer, liver capsular macrophages, Ultrafast lasers, monocyte cells, cancer treatments, antibody drug, gene mutations, quantum-entangled photons, gut microbes, skin aging, stroke, machine learning, Cloned tumors, cancer, Rare Skin Disease, terahertz lasers, silicon-nanostructure pixels, oral cancer, heart muscle cells, cancer, cancer stem cells, gastric cancer, microelectromechanical systems, data storage, silicon nanostructures, Drug delivery, cancer, muscle nuclei, Lithography, silicon nanostructures, Quantum matter, robust lattice structures, potassium ions, Photothermal therapy, Photonic devices, Optical Components, retina, allergy, immune cells, catalyst, Nanopositioning devices, mold templates, lung cancer, cytoskeletons, hepatitis b, cardiovascular disease, memory deficits, Photonics, pre-eclampsia treatment, hair loss, nanoparticles, mobile security, Fluid dynamics, MXene, Metal-assisted chemical etching, nanomedicine, Colorectal cancer, cancer therapy, liver inflammation, cancer treatment, Semiconductor lasers, zika virus, catalysts, stem cells, fetal immune system, genetic disease, liver cancer, cancer, liver cancer, RNA editing, obesity, Microcapsules, genetic disease, Piezoelectrics, cancer, magnesium alloy, Quantum materials, therapeutic antibodies, diabetes, 2D materials, lithium-ion batteries, obesity, lupus, surfactants, Sterilization, skin on chip, Magnetic Skyrmions, cyber-security, wound infections, human genetics, immune system, eczema, solar cells, Antimicrobials, joint disorder, genetics, cancer

Protein-protein interactions are at the heart of all cellular functions and biological processes. These interactions are carefully regulated in space and time to meet the cell’s requirements and are often disrupted in disease states.

An international study led by Chris Soon Heng Tan at the A*STAR Institute of Molecular and Cell Biology (IMCB) describes a new technique that uses powerful data analytics to infer protein-protein interaction dynamics from the melting behavior of protein complexes inside cells1.

Methods to capture snapshots of protein-protein interaction networks in cells have been described before, but as Tan explains, “until now there has been no way of monitoring the dynamics of these protein complexes in a high-throughput and untargeted manner”.

Exposing proteins to increasing temperature causes them to precipitate out of solution. Thermal proximity coaggregation (TPCA) is based on the idea that proteins that are part of a stable protein complex will coprecipitate, by virtue of close proximity, and have a similar precipitation profile across different temperatures (or melting curve).

In isolation, different proteins are likely to have different melting curves, but the team showed that in more than 350 well-characterized human protein complexes, the melting curves of interacting proteins are statistically similar. Thus, by quantifying similarity between melting curves, the TPCA method can be used to determine which proteins are likely to interact with each other and form stable complexes across different samples.

“We were quite surprised that the TPCA signatures were so strong and detectable,” admits Tan. TPCA signatures were found to correlate with the amount of interaction between two proteins. Accordingly, they show that some complexes change their melting curves depending on the cell type or cell cycle stage, suggesting that TPCA could be used to identify changes in protein interactions under different conditions.

When explaining the advantages of TPCA, Tan says that when compared with current methods, TPCA does not rely on the availability of appropriate affinity reagents, such as antibodies, nor does it require genetic engineering. This allows it to be applied to tissues and clinical samples to identify protein complexes that are driving disease progression and that could serve as potential prognosis markers or therapeutic targets.

The team is already using the technique to study the molecular effects of drugs and synthetic chemicals, and plans to extend the technique to study the progression of selected human diseases.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Molecular and Cell Biology (IMCB) and the Institute of Medical Biology (IMB).

Source : A*STAR Research