Artificial Intelligence-driven Imaging Research Makes Diagnosing Disease Easier

memory retention, Artificial Intelligence, serotonin syndrome, artificial intelligence, artificial intelligence, Alzheimer’s disease, cybersickness, Machine learning, self-powered sensor, autonomous vehicle, rechargeable lithium-oxygen battery, smartphone battery life, artificial intelligence, integrity of metals, brain control, diabetes, pesticide, skin microbes, Silicon Breakthrough, wearable technology and AI, cosmic microwave, obesity, Mental Health, eye exams, semiconductors, drug testing, vaccinated fish, cancer cells, energy drinks, chronic illness, battery, metabolism, memory, artificial intelligence, cellphone charging, Smoking, drinking water, brain function, skin cancer, measurement method, Internet connectivity, Artificial intelligence, 3D printing, climate, antipsychotics, drugs, Marijuana

A recent advancement in microscope imaging technology at the University of Waterloo could soon make diagnosing disease more accessible and affordable.

The advancement, developed by Waterloo researchers Farnoud Kazemzadeh and Alexander Wong, has led to a new form of spectral light-fusion microscope for capturing lightfield images in full-colour. Full-colour images are required in pathology as it enables the microscope user to analyze the behaviour and interactions of different organisms at a scale that much larger than traditional microscopes.

Pathology is a medical specialty that focuses on the diagnosis of disease based on laboratory analysis of bodily fluids and tissues.

The several-hundred-dollar microscope has no lens, and uses artificial intelligence and mathematical models of light to develop 3D images at a large scale. It’s a process that currently requires a technician to “stitch” together multiple images from traditional microscope images to get the same effect, and requires a machine that costs several hundred thousand dollars.

“In medicine, we know that pathology is the gold standard in helping to analyze and diagnose patients, but that standard is difficult to come by in areas that can’t afford it,” said Wong, an associate professor of Engineering at Waterloo and Canada Research Chair in Medical Imaging. “This technology has the potential to make pathology labs more affordable for communities who currently don’t have access to conventional equipment.”

The current spectral light-fusion microscope represents the second-generation of technology that he patented last year with Kazemzadeh.

The microscope captures light fields and allows for 3D images that are approximately 100-times larger than the 2D images captured by more traditional microscopes.

“Currently, the technology required to operate a pathology lab is quite expensive and is largely restricted to places such as Europe and North America, which can afford them,” said Kazemzadeh, an adjunct professor of Systems Design Engineering at Waterloo. “It would be interesting to see what a more affordable, mobile pathology lab could achieve.”

Details of the first-generation microscope invented by Kazemzadeh and Wong were published last year inNature Scientific Reports.

About the University of Waterloo

University of Waterloo is Canada’s top innovation university. With more than 36,000 students we are home to the world’s largest co-operative education system of its kind. Our unmatched entrepreneurial culture, combined with an intensive focus on research, powers one of the top innovation hubs in the world. Find out more at uwaterloo.ca.

Source : University of Waterloo