Genetically Mutated Rats Could Be a 21st Century Form of Pest Control

Old adage? Urban myth? Either way the saying ‘You are never further than two metres from a rat’ tends to make people look around themselves nervously. Since our move into settlements first gave rats the environment they needed to thrive, we’ve been battling their numbers – for the most part unsuccessfully.

transportation, beacons, clever sensor device, Smart device, nanochips, type 2 diabetes, graphene, Wastewater treatment, kidney disease, cancer treatment, data transmission, sensitive robots, Photovoltaic, hydrogen mobility, genetic codes, wastewater treatment, Earthquake Defences, food waste, plastic pollution, Breast Cancer, renewable resources, energy self-sufficient, cancer, Infectious Disease in Dogs, Printed Solar Cell, chronic diseases, Radical Aircraft Engine, Infrared Sensor, Mummifying, bacterial and viral infection, steel waste gases, Hydrogen-Powered Mobility, Gene cluster identification, Equipment Waste, plant cells, biodegradable materials, climate change, biomedical devices, Stretchable Smart Sensor, brain cells, interstitium, Mediterranean diet, Bat DNA, graphene, global warming, infectious disease, INTEGRA , cancer, Huntington, man flu, black hole, Carbon dioxide, genes, Alzheimer, Brain-computer interfaces, graphene, immune system, topology, climate change, Twin Embryos, blue brain, climate change, human genome, mature B cell neoplasia, artificial iris, autonomous robot, chemotherapy, tidal energy, Nanomedicine, ecosystem, Mycotoxins, obesity, methylisation, deep drilling, brain scans, volcanic gas, biocatalyst enzymes, earthquakes, detectors, robotics, asthma sufferers, infrastructure, olive trees, solar energy, satellites, olive oil, robotic arms, zika virus, locked-in state, digital detox, climate change, climate, stroke, The new production method was developed by engineers at the University of Exeter. It consists in creating entire device arrays directly on the copper substrates used for the commercial production of graphene, after which complete and fully-functional devices can be transferred to a substrate of choice. This process has been demonstrated by producing a flexible and completely transparent graphene oxide-based humidity sensor. Not only does this device outperform currently-available commercial sensors, but it’s also cheap and easy to produce using common wafer-scale or roll-to-roll manufacturing techniques. ‘The conventional way of producing devices using graphene can be time-consuming, intricate and expensive and involves many process steps including graphene growth, film transfer, lithographic patterning and metal contact deposition,’ explains Prof David Wright from Exeter's Engineering department. ‘Our new approach is much simpler and has the very real potential to open up the use of cheap-to-produce graphene devices for a host of important applications from gas and bio-medical sensors to touch-screen displays.’ One of team’s main objectives was to increase the range of surfaces that graphene devices can be put on. Whilst the demonstrated humidity sensor was integrated in a plasdinosaur, dieting, coral, dengue epidemics, vaccines, thermal energy, artificial intelligence, Cloudlightning, Memristors, Sensory Tool, HIV, autonomous robot, offshore renewable energy, Wearable robots, processors, Artificial, climate, plasmons, Antarctica’s ice, cryogenic preservation

Now there may be a better way to control their numbers. Researchers in Scotland said in December 2017 they had developed two different ways to disrupt female fertility in rats and mice, building on a similar approach that has already been tested in the lab to eliminate malaria-carrying mosquitoes.

Scientists working at the University of Edinburgh’s Roslin Institute are looking into a new tool to further the goal by using CRISPR gene editing techniques. CRISPR stands for ‘Clustered Regularly Interspaced Palindromic Repeats’, chunks of regularly recurring bits of DNA that arose as an ancient bacterial defense system against viral invasions. Gene editing involves the precise cutting using acts like a pair of molecular scissors, and pasting of DNA by specialised proteins—inspired by nature, engineered by researchers.

Using this editing technique, the team is investigating a technology called ‘gene drive’ as a way to spread infertility in rats and mice – the technique already works for mosquito control. Gene drive is a powerful technique used to ensure that a particular genetic trait is inherited by all descendants. It means that a gene of interest can spread throughout an entire population within a few generations.

Currently, an older approach called ‘sterile insect technology’ is being used in some areas to fight mosquitoes. Intrexon’s Oxitec unit has already deployed its sterile male mosquitoes, whose offspring die when young, in Brazil. But because Oxitec’s mosquitoes last only one generation, a vast number must be released to swamp their wild counterparts.

EU support to the INTEGRA project, now over, is feeding into the research assessing the impact of the insertion of ‘x shredder’ code into the DNA of male rats. This would destroy the ‘x’ chromosomes in their sperm, meaning they could only pass on a ‘y’ chromosome, so their offspring would never be female. With fewer and fewer females over time, the population would have to decline.

The rodents would be genetically modified in the laboratory before being released into the wild where they could mate with the native population. Professor Bruce Whitelaw and his colleagues, who published details of their rodent work in the journal Trends in Biotechnology, hope as a next step to build self-limiting gene drives that would burn out after a certain number of generations. Successful application of the technology would mean the use of poisons, pesticides and other chemicals would be obviated.

INTEGRA (New tools for genetic engineering using targeted integration vectors application to agronomy food safety and gene therapy) set out to develop new genetic engineering tools to permit the targeted integration of a transgene into the genome of the desired eukaryotic organism. The researchers hoped this would have visible repercussions on fundamental and applied research particularly in pharmaceutics agronomy and food sciences.

Source: CORDIS