A Guidebook for Exotic States

A theoretical model will allow systematic study of a promising class of peculiar quantum states

Cancer cells, cilia development, air pollution, photonic devices, Micro-lens, mosquito-borne infections, Microbiota, bone repair, 3D printing, neurodegenerative disease, cancer treatments, biological research, sepsis, foot and mouth disease, cytometry, batteries, Influenza A virus, vascular diseases, New Cancer Drugs, RNA molecules, polymers, antimicrobial resistance, Aging White Blood Cells, microviscosity, Transplant Drug, Nanophotonics, photonics, Built-In Nanobulbs, cerebral cortex, cancer cells, nanowires, optoelectronic, solar energy, gold nanowires, Chikungunya virus, concrete, glaucoma, light-emitting diode, Proteomics, nanostructures, nickel catalyst, Ultrafast lasers, liver capsular macrophages, obesity, cancer, lignin polymer, liver capsular macrophages, Ultrafast lasers, monocyte cells, cancer treatments, antibody drug, gene mutations, quantum-entangled photons, gut microbes, skin aging, stroke, machine learning, Cloned tumors, cancer, Rare Skin Disease, terahertz lasers, silicon-nanostructure pixels, oral cancer, heart muscle cells, cancer, cancer stem cells, gastric cancer, microelectromechanical systems, data storage, silicon nanostructures, Drug delivery, cancer, muscle nuclei, Lithography, silicon nanostructures, Quantum matter, robust lattice structures, potassium ions, Photothermal therapy, Photonic devices, Optical Components, retina, allergy, immune cells, catalyst, Nanopositioning devices, mold templates, lung cancer, cytoskeletons, hepatitis b, cardiovascular disease, memory deficits, Photonics, pre-eclampsia treatment, hair loss, nanoparticles, mobile security, Fluid dynamics, MXene, Metal-assisted chemical etching, nanomedicine, Colorectal cancer, cancer therapy, liver inflammation, cancer treatment, Semiconductor lasers, zika virus, catalysts, stem cells, fetal immune system, genetic disease, liver cancer, cancer, liver cancer, RNA editing, obesity, Microcapsules, genetic disease, Piezoelectrics, cancer, magnesium alloy, Quantum materials, therapeutic antibodies, diabetes, 2D materials, lithium-ion batteries, obesity, lupus, surfactants, Sterilization, skin on chip, Magnetic Skyrmions, cyber-security, wound infections, human genetics, immune system, eczema, solar cells, Antimicrobials, joint disorder, genetics, cancer

Research on the fragile states of matter that could give traction to the many promises of quantum computing has been given a boost by a comprehensive set of theoretical tools developed by A*STAR researchers1.

Long theorized but notoriously difficult to achieve in practice, quantum computers rely on a mechanism in quantum physics by which an object can simultaneously exist in a fuzzy superposition of multiple states. This and other complementary quantum processes could theoretically be utilized to perform complex operations many times faster than in classical computers. Yet despite significant research and investment, quantum computers are still undeveloped, with only a handful of rudimentary computing platforms demonstrated experimentally. One of the principal reasons for the lack of progress is the fragility of the quantum states that support mechanisms like superposition.

Electrons and light, the typical ‘information carriers’ of quantum computing systems, both have quantum properties that could be exploited, but the trick is to create a physical material system that provides the interactions needed to make the quantum phenomena appear. This takes researchers into uncharted physics territory.

Bo Yang and Ching Hua Lee from the A*STAR Institute of High Performance Computing, in collaboration with researchers from China and the UK, have now developed a general theoretical framework for a promising class of quantum material systems that will provide a universal language for researchers in this pioneering field.

“Our framework describes a class of exotic phases of matter consisting of a very thin sheet of electrons subject to a strong perpendicular magnetic field,” explains Yang. “Unlike conventional phases of matter such as liquids or solids, these phases are defined by specific patterns of electrons ‘dancing’ around each other.”

Different ‘dancing patterns’ produce different two-dimensional states, or ‘topological order’, in the same manner that pin pricks in a piece of paper produce different patterns. And while quantum mechanical properties are generally very fragile, those manifested through topological order are very robust and could theoretically be utilized for practical applications such as topological quantum computers.

By analyzing the algebraic structures of various simple models and validating their results against large-scale numerical computations, Yang and his team developed a model that allows physicists to study these topological states over a wide range of conditions, including states that are common in real materials.

“Our work can help both theorists and experimentalists to understand and realize highly interesting new phases of matter,” says Yang.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing. For more information about the team’s research, please visit theComplex Systems Group webpage.

Source : A*STAR Research