Healing Damaged Hearts

Scientists believe they have discovered why heart muscle cells regenerate so slowly, opening potential for inducing damaged hearts to repair themselves

Cancer cells, cilia development, air pollution, photonic devices, Micro-lens, mosquito-borne infections, Microbiota, bone repair, 3D printing, neurodegenerative disease, cancer treatments, biological research, sepsis, foot and mouth disease, cytometry, batteries, Influenza A virus, vascular diseases, New Cancer Drugs, RNA molecules, polymers, antimicrobial resistance, Aging White Blood Cells, microviscosity, Transplant Drug, Nanophotonics, photonics, Built-In Nanobulbs, cerebral cortex, cancer cells, nanowires, optoelectronic, solar energy, gold nanowires, Chikungunya virus, concrete, glaucoma, light-emitting diode, Proteomics, nanostructures, nickel catalyst, Ultrafast lasers, liver capsular macrophages, obesity, cancer, lignin polymer, liver capsular macrophages, Ultrafast lasers, monocyte cells, cancer treatments, antibody drug, gene mutations, quantum-entangled photons, gut microbes, skin aging, stroke, machine learning, Cloned tumors, cancer, Rare Skin Disease, terahertz lasers, silicon-nanostructure pixels, oral cancer, heart muscle cells, cancer, cancer stem cells, gastric cancer, microelectromechanical systems, data storage, silicon nanostructures, Drug delivery, cancer, muscle nuclei, Lithography, silicon nanostructures, Quantum matter, robust lattice structures, potassium ions, Photothermal therapy, Photonic devices, Optical Components, retina, allergy, immune cells, catalyst, Nanopositioning devices, mold templates, lung cancer, cytoskeletons, hepatitis b, cardiovascular disease, memory deficits, Photonics, pre-eclampsia treatment, hair loss, nanoparticles, mobile security, Fluid dynamics, MXene, Metal-assisted chemical etching, nanomedicine, Colorectal cancer, cancer therapy, liver inflammation, cancer treatment, Semiconductor lasers, zika virus, catalysts, stem cells, fetal immune system, genetic disease, liver cancer, cancer, liver cancer, RNA editing, obesity, Microcapsules, genetic disease, Piezoelectrics, cancer, magnesium alloy, Quantum materials, therapeutic antibodies, diabetes, 2D materials, lithium-ion batteries, obesity, lupus, surfactants, Sterilization, skin on chip, Magnetic Skyrmions, cyber-security, wound infections, human genetics, immune system, eczema, solar cells, Antimicrobials, joint disorder, genetics, cancer

Researchers at A*STAR have identified the ‘brakes’ that keep heart muscle cells from dividing and healing damaged heart tissue1. This finding raises the possibility of developing treatments that target these brakes to stimulate heart repair.

More people die of cardiovascular disease than of any other cause. One reason the disease is so often fatal is that heart muscle cells, or cardiomyocytes, are very slow to divide and replenish themselves. Consequently, damage to the heart is often irreversible. Scientists have long searched for a way to induce cardiomyocytes to regenerate at higher rates.

Now, Roger Foo and his co-workers at the A*STAR Genome Institute of Singapore have identified the culprit responsible for the slow regeneration rates of cardiomyocytes — a long noncoding ribonucleic acid (RNA) the team labeled ‘SingHeart’.

Noncoding RNA does not code for proteins and previously had no known useful role, leading some to call it ‘junk RNA’. But there is now recognition that noncoding RNA plays an important role in modifying the expression of genes that code for proteins. In the case of SingHeart, Foo and co-workers found that the noncoding RNA regulates genes that control the ability of cardiomyocytes to multiply.

“This finding has the potential to change forever the way heart failure patients are treated,” comments Foo. “Right now, drugs for patients with cardiovascular disease only stem the progress of the disease. Regenerative treatments that target SingHeart could reverse the course of the disease, which would be a revolutionary way to treat heart failure.”

The researchers discovered SingHeart by analyzing gene expression in single cardiomyocytes derived from healthy and diseased hearts of both mice and humans. Their analysis revealed that, in diseased hearts, certain cardiomyocytes activate genetic programs related to cell division — the first time that different subpopulations of cardiomyocytes have been shown to have different gene expression in response to stress. Further analysis showed that SingHeart plays a role in blocking genes responsible for cell division in cardiomyocytes.

The team is now exploring whether this finding can be used to develop new treatments for cardiovascular disease. “We’re very hopeful this will lead to future clinical treatments,” says Foo. “If not through SingHeart, then through other molecules that my team are also hunting for.”

The A*STAR-affiliated researchers contributing to this research are from the Genome Institute of Singapore.

Source : A*STAR Research