Living Cell Culture Learning Process to Be Implemented for the First Time


Lobachevsky University scientists under the supervision of Alexey Mikhailov, Head of the UNN PTRI Laboratory of Thin Film Physics and Technology, are working to develop an adaptive neural interface that combines, on the one hand, a living culture, and on the other, a neural network based on memristors. This project is one if the first attempts to combine living biological culture with a bio-like neural network based on memristors. Memristor neural networks will be linked to a multi-electrode system for recording and stimulating the bioelectrical activity of a neuron culture that performs the function of analyzing and classifying the network dynamics of living cells.

Compared with some international competitors who set the task of “connecting the living world and artificial architectures” (for example, the RAMP project), the advantage of the UNN project is that highly skilled experts in various fields (including physics and technology of memristive nanostructures, neural network modeling, electronic circuit design, neurodynamics and neurobiology) are concentrated both in terms of their location and organization within the same university.

According to Alexey Mikhailov, UNN scientists are now working to create a neural network prototype based on memristors, which is similar to a biological nervous system with regard to its internal structure and functionality.

“Due to the locality of the memristive effect (such phenomena occur at the nanoscale) and the use of modern standard microelectronic technologies, it will be possible to obtain a large number of neurons and synapses on a single chip. These are our long-time prospects for the future. It means, in fact, that one can “grow” the human brain on a chip. At present, we are doing something on a simpler scale: we are trying to create hybrid electronic circuits where some functions are implemented on the basis of traditional electronics (transistors), and some new functions that are difficult to implement in hardware are realized on the basis of memristors”, said Alexey Mikhailov.

Currently, researchers are exploring the possibility of constructing a feedback whereby the output signal from the memristor network will be used to stimulate the biological network. Actually, it means that for the first time the process of learning will be realized for a living cell culture. The living culture used by the scientists is an artificially grown neuronal culture of brain cells. In principle, however, one can also use a slice of living tissue.

The aim of the project is to create compact electronic devices based on memristors that reproduce the property of synaptic plasticity and function as part of bio-like neural networks in conjunction with living biological cultures.

The use of hybrid neural networks based on memristors opens up amazing prospects. First, with the help of memristors it will be possible to implement the computing power of modern supercomputers on a single chip. Secondly, it will be possible to create robots that manage an artificially grown neuronal culture. Thirdly, such “brain-like” electronic systems can be used to replace parts of the living nervous system in the event of their damage or disease.

Source : Lobachevsky University