Memristors Promise More Precise and Affordable Neuroprosthetics

In a new paper, researchers from the University of Southampton, UK, and members of the EU-funded RAMP project, have demonstrated how memristors could help aid the development of more precise and affordable neuroprosthetics and bioelectric medicines.

transportation, beacons, clever sensor device, Smart device, nanochips, type 2 diabetes, graphene, Wastewater treatment, kidney disease, cancer treatment, data transmission, sensitive robots, Photovoltaic, hydrogen mobility, genetic codes, wastewater treatment, Earthquake Defences, food waste, plastic pollution, Breast Cancer, renewable resources, energy self-sufficient, cancer, Infectious Disease in Dogs, Printed Solar Cell, chronic diseases, Radical Aircraft Engine, Infrared Sensor, Mummifying, bacterial and viral infection, steel waste gases, Hydrogen-Powered Mobility, Gene cluster identification, Equipment Waste, plant cells, biodegradable materials, climate change, biomedical devices, Stretchable Smart Sensor, brain cells, interstitium, Mediterranean diet, Bat DNA, graphene, global warming, infectious disease, INTEGRA , cancer, Huntington, man flu, black hole, Carbon dioxide, genes, Alzheimer, Brain-computer interfaces, graphene, immune system, topology, climate change, Twin Embryos, blue brain, climate change, human genome, mature B cell neoplasia, artificial iris, autonomous robot, chemotherapy, tidal energy, Nanomedicine, ecosystem, Mycotoxins, obesity, methylisation, deep drilling, brain scans, volcanic gas, biocatalyst enzymes, earthquakes, detectors, robotics, asthma sufferers, infrastructure, olive trees, solar energy, satellites, olive oil, robotic arms, zika virus, locked-in state, digital detox, climate change, climate, stroke, The new production method was developed by engineers at the University of Exeter. It consists in creating entire device arrays directly on the copper substrates used for the commercial production of graphene, after which complete and fully-functional devices can be transferred to a substrate of choice. This process has been demonstrated by producing a flexible and completely transparent graphene oxide-based humidity sensor. Not only does this device outperform currently-available commercial sensors, but it’s also cheap and easy to produce using common wafer-scale or roll-to-roll manufacturing techniques. ‘The conventional way of producing devices using graphene can be time-consuming, intricate and expensive and involves many process steps including graphene growth, film transfer, lithographic patterning and metal contact deposition,’ explains Prof David Wright from Exeter's Engineering department. ‘Our new approach is much simpler and has the very real potential to open up the use of cheap-to-produce graphene devices for a host of important applications from gas and bio-medical sensors to touch-screen displays.’ One of team’s main objectives was to increase the range of surfaces that graphene devices can be put on. Whilst the demonstrated humidity sensor was integrated in a plasdinosaur, dieting, coral, dengue epidemics, vaccines, thermal energy, artificial intelligence, Cloudlightning, Memristors, Sensory Tool, HIV, autonomous robot, offshore renewable energy, Wearable robots, processors, Artificial, climate, plasmons, Antarctica’s ice, cryogenic preservation

Monitoring neuronal cell activity is fundamental to neuroscience and the development of neuroprosthetics but a persistent problem is the device being able to effectively process the neural data in real-time, which in turn imposes restrictive requirements on bandwitdth, energy and computation capacity.

The solution to this problem, according to scientists working as part of the RAMP (Real neurons-nanoelectronics Architecture with Memristive Plasticity) project could lie with the use of memristors. These are electrical components that limit or regulate the flow of electrical current in a circuit and can remember the amount of charge that was flowing through it and retain data, even when the power is turned off. In essence, they perform a role akin to biological synapses and possess the intrinsic ability to simultaneously carry out computational tasks and store information at aggressively downscaled volumes and power dissipation.

Lead author Isha Gupta, a postgraduate research student at Southampton University, commented: ‘Our work can significantly contribute towards further enhancing the understanding of neuroscience, developing neuroprosthetics and bio-electronic medicines by building tools essential for interpreting the big data in a more effective way.’

The research team developed a nanoscale Memristive Integrative Sensor (MIS) into which they fed a series of voltage-time samples, which replicated neuronal electrical activity. By acting like brain synapses, the metal-oxide MIS was reportedly able to encode and compress (up to 200 times) neuronal spiking activity recorded by multi-electrode arrays. Besides addressing the bandwidth constraints, the researchers claim that this approach is also very power-efficient in that the power needed per recording channel was up to 100 times less when compared to current best practices.

‘We are thrilled that we succeeded in demonstrating that these emerging nanoscale devices, despite being rather simple in architecture, possess ultra-rich dynamics that can be harnessed beyond the obvious memory applications to address the fundamental constraints in bandwidth and power that currently prohibit scaling neural interfaces beyond 1 000 recording channels,’ said co-author Dr Themis ProDROmakis.

The work undertaken by the RAMP team is a highly promising leap forward for addressing a diverse number of diseases and conditions from which the development of sophisticated neuroprosthetics promise to significantly reduce symptoms and increase quality of life for patients. One of the biggest challenges in this field has been to ensure that neuroprosthetics have the ‘feel’ of being a part of the patient’s own body or, for prosthetics located in or on certain parts of the body, are non-invasive.

Through the RAMP consortium, engineers from Southampton were able to link with biologists from the University of Padova, Italy, and the Max Planck Institute, Germany, using the facilities of the Southampton Nanofabrication Centre. The paper has been published in the journal ‘Nature Communications’.

The RAMP project, which received just over EUR 2 million in EU-funding, is due to end in October 2016.

Source: Based on information from CORDIS.