New Study Shines Light on Relation Between Body Mass and Changes in Methylisation

Around 1.5 billion people worldwide are overweight or affected by obesity. They are at risk cardiovascular disease and related metabolic and inflammatory disturbances. While the links between being over-weight and the clinical conditions associated with adiposity are not clear, recent research shows it may influence DNA methylation.

transportation, beacons, clever sensor device, Smart device, nanochips, type 2 diabetes, graphene, Wastewater treatment, kidney disease, cancer treatment, data transmission, sensitive robots, Photovoltaic, hydrogen mobility, genetic codes, wastewater treatment, Earthquake Defences, food waste, plastic pollution, Breast Cancer, renewable resources, energy self-sufficient, cancer, Infectious Disease in Dogs, Printed Solar Cell, chronic diseases, Radical Aircraft Engine, Infrared Sensor, Mummifying, bacterial and viral infection, steel waste gases, Hydrogen-Powered Mobility, Gene cluster identification, Equipment Waste, plant cells, biodegradable materials, climate change, biomedical devices, Stretchable Smart Sensor, brain cells, interstitium, Mediterranean diet, Bat DNA, graphene, global warming, infectious disease, INTEGRA , cancer, Huntington, man flu, black hole, Carbon dioxide, genes, Alzheimer, Brain-computer interfaces, graphene, immune system, topology, climate change, Twin Embryos, blue brain, climate change, human genome, mature B cell neoplasia, artificial iris, autonomous robot, chemotherapy, tidal energy, Nanomedicine, ecosystem, Mycotoxins, obesity, methylisation, deep drilling, brain scans, volcanic gas, biocatalyst enzymes, earthquakes, detectors, robotics, asthma sufferers, infrastructure, olive trees, solar energy, satellites, olive oil, robotic arms, zika virus, locked-in state, digital detox, climate change, climate, stroke, The new production method was developed by engineers at the University of Exeter. It consists in creating entire device arrays directly on the copper substrates used for the commercial production of graphene, after which complete and fully-functional devices can be transferred to a substrate of choice. This process has been demonstrated by producing a flexible and completely transparent graphene oxide-based humidity sensor. Not only does this device outperform currently-available commercial sensors, but it’s also cheap and easy to produce using common wafer-scale or roll-to-roll manufacturing techniques. ‘The conventional way of producing devices using graphene can be time-consuming, intricate and expensive and involves many process steps including graphene growth, film transfer, lithographic patterning and metal contact deposition,’ explains Prof David Wright from Exeter's Engineering department. ‘Our new approach is much simpler and has the very real potential to open up the use of cheap-to-produce graphene devices for a host of important applications from gas and bio-medical sensors to touch-screen displays.’ One of team’s main objectives was to increase the range of surfaces that graphene devices can be put on. Whilst the demonstrated humidity sensor was integrated in a plasdinosaur, dieting, coral, dengue epidemics, vaccines, thermal energy, artificial intelligence, Cloudlightning, Memristors, Sensory Tool, HIV, autonomous robot, offshore renewable energy, Wearable robots, processors, Artificial, climate, plasmons, Antarctica’s ice, cryogenic preservation

Work carried out by researchers involved in the EU-funded IHEALTH-T2D project has fed into a new report that shines a light on the relationship between DNA methylation and body mass index. Genetic association analyses show that changes in DNA methylation are predominantly the result of adiposity, rather than being its cause.

The study found that, in many tissues, methylation loci are enriched for functional genomic features. The research, recently published in Nature, shows that sentinel methylation markers identify gene expression signatures at 38 loci. These loci identify the genes involved in lipid and lipoprotein metabolism, substrate transport and inflammatory pathways. The research also shines light on the relationship between type 2 diabetes and DNA methylation, showing that disturbances in methylation predict the future development of the condition.

The study considered 5 387 people of both European and Asian ancestry – populations known to be at risk from high body masses and related metabolic conditions. Methylation in genomic DNA from blood was quantified: blood was chosen for the analysis as it is a metabolically active tissue and has a key role to play both in inflammatory and cardiovascular conditions affecting those with high BMI.

Inflammatory and hormonal disturbances in the adipocytes of obese people contribute to insulin resistance and other metabolic consequences. To assess the relation of their observations in blood to other metabolically relevant tissues, researchers compared methylation levels at 187 loci in blood, subcutaneous and omental fat, liver, muscle, spleen and pancreas. Mean methylation levels at the 187 loci correlate moderately to strongly between the tissues.

They found that, after correction, 120 of the CpG sites (regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide) show directional consistency for association with BMI in both adipose tissue and blood, whereas 91 sites are associated with BMI in adipose tissue. This supports the view that methylation levels in blood are related to methylation patterns in other tissues at the CpG sites examined.

Results of the research provide new insights into the impact of adiposity on our biologic pathways and may give rise to new strategies for the prediction and prevention of type 2 diabetes and other conditions relating to obesity.

Source: Based on information from CORDIS